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ABSTRACT

Multimodal Large Language Models (mLLMs) are often used to answer questions
in structured data such as tables in Markdown, JSON, and images. While these
models can often give correct answers, users also need to know where those an-
swers come from. In this work, we study structured data attribution/citation, which
is the ability of the models to point to the specific rows and columns that support an
answer. We evaluate several mLLMs across different table formats and prompting
strategies. Our results show a clear gap between question answering and evidence
attribution. Although question answering accuracy remains moderate, attribution
accuracy is much lower, near random for JSON inputs, across all models. We also
find that models are more reliable at citing rows than columns, and struggle more
with textual formats than images. Finally, we observe notable differences across
model families. Overall, our findings show that current mLLMs are unreliable
at providing fine-grained, trustworthy attribution for structured data, which limits
their usage in applications requiring transparency and traceability. The |GitHub
code repository and the Hugging Face Dataset is made public.

1 INTRODUCTION

Multimodal Large Language Models (mLLMs) are increasingly used to answer questions over struc-
tured data. In practice, users rely on these models to read tables, extract values, compare entries,
and summarize records across formats such as Markdown tables, JSON files, and document images.
Prior work shows that mLLLMs can often answer questions about structured inputs with reasonable
accuracy, making them attractive as general-purpose data assistants (Fang et al., [2024; |Liu et al.,
2024).

However, answering a question correctly is often not enough. In many real-world scenarios, users
also want to know where an answer came from. For example, if a model reports that a company’s
revenue increased in a given year, a natural follow-up is which row and which column in the table
support this claim. In current systems, this step is frequently unreliable: models may produce a cor-
rect answer while failing to identify the specific part of the table that justifies it. We demonstrate this
gap empirically, showing that question answering accuracy remains relatively high while attribution
or citation accuracy is substantially lower across models and prompting strategies (Section [.T)).

In this paper, we study structured data attribution-the ability of mLLMs not only to generate correct
answers, but to localize the rows and columns in the input data that support those answers. We
evaluate attribution across three common table representations-Markdown, JSON, and images-using
multiple model families and prompting strategies.

Our study is motivated by the observation that answer accuracy and attribution accuracy are distinct
capabilities. Prior work shows that models can often arrive at correct answers without being fully
grounded in the underlying evidence, particularly when partial cues or broadly relevant context are
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sufficient (Bohnet et al.| 2022} [Radevski et al., |2025). Our results provide concrete evidence of
this disparity in structured data settings: across all evaluated models, question answering accuracy
remains around 48-55%, while attribution accuracy is dramatically lower-often below 30%, and
near random for JSON inputs (Section 4.)).

These findings align with broader evidence that attribution and citation remain challenging for lan-
guage models. Prior work on hallucination shows that models often generate confident but un-
grounded outputs, including incorrect or fabricated references (Huang et al.| 2025). Even when
explicitly prompted to cite sources, models frequently produce vague or incorrect attributions (Gao
et al.| 2023)). Fine-grained structured attribution benchmarks-such as TabCite-have been introduced
to assess models’ ability to locate relevant table structures (e.g., rows and columns), highlighting
that precise localization remains an open challenge (Mathur et al.| 2024).

Across our experiments, we observe several consistent patterns. First, except in JSON settings,
models are substantially better at identifying the correct row than the correct column, suggesting
persistent difficulty with fine-grained field-level localization. Third, attribution is more reliable when
tables are presented as images than when they are provided in textual formats such as Markdown or
JSON. Finally, we observe notable differences across model families, indicating that architectural
choices influence attribution behavior.

These limitations are particularly concerning in domains such as finance, healthcare, and law, where
systems must support auditability and traceability. In such settings, it is not sufficient to provide
a plausible answer; outputs must be traceable to specific data fields. Our results show that current
mLLMs are unreliable at providing this level of fine-grained traceability, even when their answers
appear correct (Section [4.1)).

Finally, we summarize our contributions as follows:

* We propose ViTaB-A, an exhaustive benchmark for assessing mLLMs on Visual Table
Attribution tasks across modalities (text, JSON, rendered images).

* To the best of our knowledge, we are the first to benchmark open-source mLLM families,
not only on Table QA and Attribution performances, but also under confidence alignment
and uncertainty calibration.

* Qur findings reveal that mLLMs often struggle in spatial QA tasks compared to spatial
attribution in a text-in-vision paradigm.
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Figure 1: A brief overview of the general workflow of our proposed framework: ViTaB-A bench-
marking.
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2 RELATED WORKS

Question Answering over Structured Data: Early neural methods such as TaPas (Herzig et al.,
2020) and structure-aware transformers (Zhang et al., 2020) showed table reasoning without usng
hand-crafted query programs. Datasets like HiTab (Cheng et al., 2022) and HiBench (Jiang et al.,
20235)) introduce hierarchical and structured challenges. With LLMs and mLLMs, several studies
report moderate QA performance on both text and image table formats (Fang et al., |2024; Deng
et al.,[2024} [Zheng et al., [2024).

Attribution and Grounding in LLMs: Work on hallucination and grounding shows that models
often produce fluent but unsupported claims (Huang et all 2025). Prompted citation generation
still yields incorrect or unverifiable references (Gao et al.l [2023). Benchmarks and systems for
attributed QA show evidence selection is hard in practice (Bohnet et al.| [2022; |Vankov et al.| [2025;
Radevski et al., 2025)). Recent efforts target structured table attribution directly, e.g., MATSA and
TabCite (Mathur et al., 2024) and automatic attribution benchmarks (Hu et al., 2025).

Optimization Objectives and Confidence: Modern LLMs use next-token pretraining followed by
instruction tuning and RL fine-tuning that reward helpful answers |Ouyang et al.| (2022). Evalua-
tion suites emphasize final-answer correctness (Liang et al., 2022)). Systems such as WebGPT and
multi-agent pipelines add components to improve grounding (Nakano et al.l 2021} Mathur et al.,
2024). Research on confidence and calibration reveals frequent misalignment between confidence
and accuracy (Kumar et al.| 2024a; (Geng et al., 2024; Ye et al., 2024; |Groot & Valdenegro Toro,
2024).

Representation Effects: Representation and layout affect model behavior. Comparisons of text vs
image table inputs and multimodal spatial challenges are reported in prior work (Deng et al.| 2024;
Zheng et al.||2024; [Wang et al.| |2024; [Liu et al.,|2025)).

3 METHODOLOGY

As prior works have demonstrated, mLLMs can produce correct answers, even with spurious calcu-
lations or hallucinated reasoning. We conduct a comprehensive study on visual table attribution to
investigate trust and reliability in mLLMs. We focus on two major research questions:

1. How accurately do mLLMs identify table cells that support a given answer?
2. Does a model’s confidence score reliably reflect the correctness of its attribution?

To address these questions, we benchmark mLLLM attribution accuracy and uncertainty behavior
across model family, input representations, and prompting strategies. details the workflow
of our benchmarking approach.

3.1 TASK FORMULATION

We analyze the spatial intelligence of an mLLM-family using structured tabular data attribution.
Tables provide a controlled grounding substrate: evidence is discrete and compositional, and can
be referenced unambiguously via row-column coordinates. This makes attribution a simple but
revealing proxy for spatial competence: a model must align language with precise table structure
(cells / rows / columns) rather than merely produce plausible text (Liu et al., [2025)).

Each instance consists of a natural-language question ¢, a provided (correct) answer a, and a table
T. The answer is given to the model to shift the burden from generation to grounding: the model
is asked to identify where the support for a resides in 7. This isolates spatial grounding ability and
enables controlled comparisons across model variants. Formally, let Z(T) = {(¢,7) | i € [m], j €
[n]} denote the set of cell indices for an m x n table. Given (g, a,T), the model outputs a set of
cited cells R

S'= fo(q,a, Xy) € I(T),

returned as row—column indices (including header cells when they are part of the evidence) (Mathur
et al.| 2024). Here X, represents the table encoding.

Finally, to generalize across model scale and inference techniques, we assess the aforementioned
properties on multiple model families with varying training parameters under standard in-context
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learning paradigms: zero-shot (Brown et all, 2020), few-shot 2020), and CoT
2022) prompting. All prompts used in this paper are provided in Appendix [A.T]

Vertical 1: Representation Gap (Visual vs. Text)

We vary the table representation
r € R = {image, markdown, json}, X, = Enc,.(T),

where Xjmage 18 a rendered table image and Xmarkdown, Xjson are structured text encodings.
This contrasts attribution under true visual parsing vs. attribution under serialization, expos-

ing whether grounding is genuinely multimodal (Deng et al., 2024). For image tables, we apply
semantics-preserving perturbations

Xi/mage = 7"'(Ximage) ,

where 7 changes appearance without changing cell content or layout (e.g., header/cell color
changes, font/style changes). This allows us to assess the aggregate impact of superficial stylistic

variations on attribution quality of rendered image data.
S J

Vertical 2: Reliability and Confidence Alignment

Beyond what cells are cited, we assess whether the model can reliably communicate attribu-
tion correctness. We compare (i) internal confidence derived from token-level likelihoods of
the citation output with (ii) verbatim (verbalized) confidence elicited as an explicit self-report;

misalignment between the two is a known failure mode (Geng et al.}[2024}; [Kumar et al., 20244d).
J

N

3.2 BENCHMARK

Our experiments are conducted on ViTaB-A, which is constructed using the HiTab
dataset, which contains question-answer pairs grounded in structured tables with annotated
evidence cells. HiTab provides which ground truth reference table entries are required to support a
correct answer, making it well-suited for attribution-centric evaluation.

We standardize attribution across representations by augmenting each table with explicit row and
column labels. This enables unambiguous cell references (e.g., B3, E7) across all experimental
conditions for accurate evaluation.

We present the tables to models using three different representations: (1) JSON; (2) Markdown;
(3) Rendered images. Such setup allows us to study the attribution behavior under both struc-
tured textual and visual inputs. For image-based tables, we additionally introduce controlled visual
perturbations that preserve the underlying tabular content while altering table appearance. These
perturbations include variations in header color (red, blue, and green) and font style (Arial and
Times New Roman). For each representation, we select 200 tables as the visual table attribution
benchmark.

3.3 MODEL SETUP

We evaluate a diverse set of mLLMs with varying architectures and parameter scales to investi-
gate the capabilities of visual table attribution across model families. Specifically, we consider the
Gemma-3 family (4B, 12B, and 27B), InternVL3.5 models (4B, 8B, 14B, and 38B), Qwen3-VL
vision-language models (2B, 4B, 8B, and 32B), and the Molmo2 family (4B and 8B) to assess
evolution of attribution accuracy and uncertainty across model scale within a family as well as ar-
chitectural differences across families.

For clarity and standardized comparison, we focus our discussion in Section [4 on the 4B-scale
models from each family. However, a comprehensive analysis covering all evaluated model sizes
and configurations is provided in Appendix [A:4]
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3.4 ATTRIBUTION METRICS

We evaluate metrics that capture both the statistical accuracy of attribution and the alignment be-
tween model’s internal and expressed confidence in attribution.

3.4.1 STATISTICAL ACCURACY

We extract the row—column indices referenced by the model and compare them against the ground-
truth attribution set. We compute cell-level accuracy measure to see how accurately the model
returns the correct evidence cells. We also report row-wise and column-wise accuracy scores to
gain insight into the model’s localization ability. These metrics help understand if the inaccuracy
stems from localization errors or failure to pinpoint exact cells. Additionally, we observe cell-wise,
row-wise and column-wise precision, recall, and F1 scores which are included in the Appendix[A.4]

Collectively, these metrics provide quantitative evidence of current mLLMSs’ ability to accurately
retrieve and localize attribution references.

3.4.2 CONFIDENCE-ACCURACY ALIGNMENT

Confidence-Probability Alignment (Kumar et al.,|2024b) refers to the correlation between a model’s
internal confidence and the verbalized certainty. We derive Internal Confidence directly from the
model’s answer level probability and reflects how strongly the model internally prioritizes a selected
attribution over the rest. On the otherhand, the Verbalized Certainty is defined as the model’s ex-
plicit expression of its confidence level through the evaluation of its natural language answer. High
correlation between these two metrics corroborate the transparency and reliability of the model for
our attribution task.

Internal Confidence: In visual table attribution, we define internal confidence as the normalized
probability of a predicted cell relative to all candidate cells. For each output token 7;, we can convert
the logits L(7;) to probability using the softmax function.

2T eL(T)

W) = sy
Zj eL(T5)

Each candidate cell ¢ may correspond to multiple tokenizations. Let 7 denote the set of token IDs
associated with a cell c. We define the raw cell confidence as the geometric mean probability among

the corresponding tokens.
1

P(c) = ( 11 Pt>TC|

teTC

We normalize the raw P(c) scores to obtain the adjusted internal confidence,
P(c)
Seee P
where C denotes the set of all table cells. For answers involving multiple cell citations, we aggregate

the individual P;¢(c) scores with pooling functions (e.g. mean, max, or product) to obtain a single
confidence score. Higher P;¢(c) signifies greater model confidence in that output cell

P[cv(c) =

Verbalized Certainty: Verbalized certainty is the model’s evaluation of explicit confidence level
in its own natural language answer. Inspired by (Kumar et al., 2024b), we develop a Confidence
Querying Prompt (CQP) that asks the model to analyze the expressed certainty in the context of the
question, answer, predicted cells, and the table representation i.e. all possible candidate cells.

The model selects one of six ranked certainty levels: Very Certain, Fairly Certain, Moderately
Certain, Somewhat Certain, Not Certain, and Very Uncertain. These ordinal levels are mapped to
confidence scores in the interval [0, 1] with increments of 0.2, enabling quantitative comparison with
internal confidence estimates.

The query effectively prompts the model to adopt an observational perspective and analyze the cer-
tainty of its answer. Additionally, by providing all cell options allows the model to contextualize its
chosen response that leads to more informed confidence judgments and further implicit verification
than only isolated evaluations.

The complete CQP formulation is provided in Appendix [A.T]
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Alignment Evaluation: To quantify confidence-accuracy alignment, we compute how well
the confidence scores—internal or verbalized—correspond to the attribution accuracy using Brier
Score (Glenn et al., |1950). Brier score directly penalizes the discrepancy between individual confi-
dence estimate and attribution accuracy, providing a clear insight into model misalignment.

For each model response 7, the Brier Score is ce}}culated as follows:

1 2
P . ;(cl a;).
where ¢; € [0, 1] is the confidence score and a; € [0, 1] is the accuracy measure. We define the
alignment score as,
A=1-P
where a higher alignment score reflects better calibration between expressed (or internal) belief and
actual prediction quality.

Additionally, we perform uncertainty quantification as presented by |Ye et al.| (2024)) for rigorous and
model-agnostic uncertainty estimates, the detailed experiments and results of which are reported in

Appendix
4 RESULTS

4.1 SUBPAR ATTRIBUTION DESPITE REASONABLE QUESTION ANSWERING

Our findings show that mLLM’s are not inherently bad at question answering (QA) over struc-
tured data, but their performance decreases significantly for attribution tasks. As shown in
QA accuracy remains relatively stable across models and modalities, typically around 50-60%. In
contrast, attribution accuracy reported in is dramatically lower, ranging from near-random
performance in JSON to around 33% in images.

Table 1: Model Accuracy in QA vs Attribution in % Across Prompting Strategies Across Open-
source Models (for 4B Parameter); Note: green depicts overall best model, and red depicts worst.

Markdown JSON Images Average

Strategy ~ Model QA At QA Awr. QA At QA A
Qwen3-VL  60.00 3550 61.50 01.00 62.00 4540 61.16 27.30
Gemma3 43.00 1340 40.00 0080 28.00 16.60 37.00 10.27

Zero Shot 1 lmo2 5550 19.50 59.50 01.00 4850 33.60 54.50 18.03
InternVL3.5 63.50 42.50 64.00 01.50 60.50 53.10 62.66 32.37
Qwen3-VL 6200 2150 6150 0150 6050 3490 6133 1930

Few Shor  G€mma3 3950 620 3600 00.60 2500 1420 34.00 07.00
Molmo?2 58.00 18.00 56.50 00.50 45.00 2020 53.00 12.90
InternVL3.5 64.00 3650 6400 01.00 5850 52.60 62.16 30.03
Qwen3-VL _ 61.00 49.00 61.00 01.00 59.50 4440 6033 31.47

CoT Gemma3 41.00 1000 38.00 0020 27.50 14.10 35.66 08.10
Molmo?2 5550 1550 57.50 01.00 50.00 2290 5433 13.13
InternVL3.5 59.00 39.00 6250 00.50 59.00 5470 6033 31.40

Average 5508 2555 55.16 0088 48.66 33.80  — _

This massive drop shows that poor attribution performance cannot be explained by weak reasoning
or answer generation. Instead, models often identify the correct answer but fail to reliably point to
the specific rows and columns that support it. Answer correctness and attribution quality therefore
appear to be separate capabilities. As a result, models may appear reliable based on QA benchmarks
while remaining unsuitable for applications that require traceability or auditability such as those in
regulated industries like banking, healthcare and law. We discuss potential causes of this disconnect,
including training objectives and evaluation practices in Section [3]

4.2 ATTRIBUTION IS EASIER IN IMAGES THAN IN TEXT

From|[Table T] we see that attribution performance varies substantially across input modalities. Mod-
els perform best when tables are presented as images, followed by Markdown, with JSON being by
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Table 2: Row vs Column Accuracy in % Across Modalities and Prompting Strategies, Across Open-
source Models (for 4B Parameter); Note: green depicts overall best model, and red depicts worst.

Markdown JSON Images

Strategy ~ Model Row Column Row Column Row Column
Qwen3-VL  73.75 48.83 10.13 36.92 78.01 58.55
Zero Shot Gemma3 70.86 23.17 5.83 21.08 47.82 30.98
Molmo2 68.75 27.58 9.16 23.33 58.51 56.13
InternVL3.5 78.25 36 4.04 42.33 69.24 59.79
Qwen3-VL 77 29.83 10.53 11.75 79.05 46.65
Few Shot Gemma3 55.37 16.33 1.83 11.83 42.51 31.28
Molmo2 72.5 24.08 9.3 16.33 40.96 35.16
InternVL3.5  64.8 18.08 3.08 18.25 59.43 16.43
Qwen3-VL 82.5 59.17 5.83 42.92 77.32 57.59
CoT Gemma3 64.79 17.83 3.38 21.25 46.13 35.56
Molmo2 68.8 18 4.88 14 54.73 37.55
InternVL3.5 82.25 41.5 3.24 53.83 78.77 64.82
Average 71.63 30.03 5.93 26.15 61.04 44.2

far the most difficult format. Average attribution accuracy on JSON is below 1%, compared to over
30% for images.

One likely explanation is that images preserve the spatial and visual hierarchy of tables, allowing
models to rely on layout-based cues such as row alignment, column boundaries, and visual grouping.
Prior work has shown that multimodal models can effectively leverage spatial structure in document
images for tasks such as table understanding and information extraction (Zheng et al.| 2024; Wang
et al.| [2024). By contrast, textual formats like JSON lack visual structure and encode hierarchy only
through nested text, requiring models to try and understand structure from sequences - a setting that
has been shown to be difficult both theoretically and empirically (Jiang et al., [2025} |Hahnl 2020).

Interestingly, this trend reverses for QA accuracy. As shown in[Table T} models often perform better
at answering questions in textual formats than in images, despite performing worse at attribution in
those same formats. One plausible explanation is that QA places weaker grounding requirements
than attribution: models can often infer the correct answer from partial cues or broadly relevant
context without needing to explicitly identify the supporting evidence (Bohnet et al., 2022; |Radevski
et al.,2025). Prior work has also suggested that reliably assessing attribution and context grounding
is significantly more challenging than answer generation itself (Hu et al.| |2025;|Vankov et al.|[2025).
Together, these results suggest that while textual formats are often sufficient for producing correct
answers, they pose a significantly greater challenge for precise and reliable attribution.

Overall, models attribute most reliably in image-based tables and struggle in textual formats, partic-
ularly JSON. While textual formats support accurate answer generation, they make citation signifi-
cantly harder. This supports our hypothesis from earlier that question answering and attribution/ci-
tation are two distinct tasks.

4.3 MODELS ARE BETTER AT CITING ROwWS THAN COLUMNS

Across modalities (except JSON) and prompting strategies, models are substantially better at identi-
fying the correct row rather than the correct column (Table 2)). Averaged across models and prompts,
row accuracy is approximately 1.3-2x higher than column accuracy for Markdown and image-based
tables.

One possible reason for this disparity is that rows and columns play very different roles in a table.
Rows often represent complete, meaningful records, such as a single person, product, or transaction.
Columns, on the other hand, represent abstract attributes or fields, such as dates, categories, or
numerical properties. Prior work on table reasoning has shown that identifying and reasoning about
the correct column — often referred to as schema linking — is especially difficult for language models,
particularly when column headers are ambiguous or require implicit interpretation (Zhang et al.|
2020; Herzig et al.l [2020). In contrast, rows are easier to localize because they more closely match
how entities and examples are described in natural language.
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This consistent disparity suggests that fine-grained attribution — especially identifying the correct
field within a record — remains a major unresolved challenge for mLLM:s.

Table 3: Confidence-Accuracy correlation for Internal and Verbal; Across Multiple Modalities.

Markdown JSON Images
Strategy  Model Internal Verbal Internal Verbal Internal Verbal
Qwen3-VL 0.56 0.69 0.42 0.62 0.60 0.62
Zero Shot Gemma3 0.45 0.40 0.27 0.32 0.41 0.39
Molmo2 0.73 0.56 0.82 0.68 0.83 0.38
InternVL3.5 0.64 0.65 0.74 0.83 0.77 0.67
Qwen3-VL 0.52 0.73 0.59 0.80 0.55 0.55
Few Shot Gemma3 0.27 0.26 0.58 0.16 0.40 0.38
W Molmo?2 0.76 0.62 0.84 0.81 0.77 0.27
InternVL3.5 0.55 0.72 0.79 0.83 0.53 0.71
Qwen3-VL 0.65 0.69 0.36 0.63 0.61 0.59
CoT Gemma3 0.27 0.36 0.40 0.29 0.36 0.38
Molmo2 0.68 0.62 0.88 0.65 0.77 0.33
InternVL3.5 0.58 0.69 0.51 0.85 0.65 0.73
Average 0.555 0.583 0.601 0.620 0.600 0.500

4.4 LACK OF STATISTICALLY SIGNIFICANT ALIGNMENT BETWEEN CONFIDENCE AND
ATTRIBUTION ACCURACY

There is no clear advantage of using confidence as an indicator for attribution ability. From
we observe that the confidence-accuracy alignment scores for the attribution task vary across mod-
els, representations, and prompting paradigms and display no consistent or strong correlation even
though the confidence scores generally lie between 60-80% (Appendix [Table 4). Across all models
(except Molmo?), internal confidence and accuracy alignment is < 70%. And even for Molmo2-
, which exhibits high internal alignment for textual representation, attribution accuracy ranks 3rd
among other model families (Figure 2)). Verbal alignment shows similar subpar scores, establishing
the unreliability of confidence scores in attribution quality comparison.

The observation is consistent with prior research on confidence. |Groot & Valdenegro Toro| (2024);
Kumar et al.[(2024a) highlight the disparity between verbalized and underlying token-level confi-
dence scores and |Geng et al.| (2024) reports that token probabilities are not inherently well-aligned
with task accuracies. Furthermore, |Ye et al.| (2024) show that naive confidence measures alone are
insufficient metrics and require post-processing to meaningfully reflect reliability.

Collectively, these outcomes support our conclusion that confidence measures should not be viewed
as a reliable indicator for attribution quality.

compares model families across attribution accuracy, QA accuracy, and confidence gap
under zero-shot, few-shot, and chain-of-thought prompting. Clear differences emerge across model
families, showing that attribution performance depends heavily on the underlying model.

4.5 SUMMARY

Overall, our results show that current mLLMs struggle to reliably attribute or cite information in
structured data. Across models and prompting strategies, citation accuracy is consistently low, par-
ticularly in structured formats such as JSON. At the same time, model confidence remains moderate
to high, even when attribution performance collapses. This indicates that confidence cannot be reli-
ably used to estimate citation correctness.

Importantly, this means that adding a second step that verifies citations using confidence may not
reduce user risk. Confidence appears more aligned with answer generation than with attribution
fidelity. As a result, models may appear reliable wile still failing to provide accurate traceability.

Attribution performance further depends strongly on how structured data is represented. Models at-
tribute most reliably when tables are presented as images and perform substantially worse on textual
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Attribution Accuracy QA Accuracy
Zero Shot Zero Shot
0.40

Chain of Thought Few Shot Chain of Thought Few Shot

—— Qwen3-4b —=— Gemma3-4b —=— Molmo4b —— InternVL-4b

Figure 2: Radar charts comparing model families across attribution accuracy, QA accuracy, and
confidence gap (1 — |verbal — internal|) under different prompting strategies.

formats such as Markdown and JSON, with JSON being the most challenging. Across all modalities,
models are also significantly better at identifying the correct row than the correct column, highlight-
ing continued difficulties with fine-grained localization. Finally, we observe clear difference across
model families. InternVL3.5-4b achieves the strongest attribution and QA accuracy.

5 CONCLUSION & FUTURE WORKS

The gap between question answering and attribution quality reflects how current mLLMs are trained
and evaluated. Most instruction-tuning and alignment pipelines optimize models to produce correct
and helpful answers, but do not explicitly reward precise citation or faithful attribution to specific
data fields (Ouyang et al.| 2022)). As a result, models can often answer questions correctly without
reliably identifying the rows and columns that support those answers. Prior work such as WebGPT
shows that accurate citation requires task-specific objectives, rather than emerging naturally from
standard training pipelines (Nakano et al., 2021)). Our proposed benchmark, ViTaB-A facilitates in
affirming that QA accuracy and attribution accuracy are separate capabilities, and progress on one
does not guarantee progress on the other.

This separation is reinforced by current evaluation practices. Benchmarks such as HELM focus pri-
marily on answer accuracy, robustness, and calibration, while structured attribution and traceability
receive little attention (Liang et al.;|2022). Although prompting strategies can slightly affect attribu-
tion, they do not close the gap, suggesting that inference-time methods alone are insufficient. This
creates a feedback loop where models are optimized and compared mainly on QA accuracy, even
though attribution remains unreliable.

These findings point to several directions for future work. Attribution should be treated as a first-
class objective, with training signals that directly optimize row and column localization. Finally, the
high verbal confidence models express despite incorrect attribution raises concerns for user trust,
especially in high-stakes domains. Overall, our results suggest that improving QA accuracy alone is
not sufficient, and that reliable structured attribution requires dedicated research attention.
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A APPENDIX

A.1 ATTRIBUTION TASK PROMPTS

Zero-shot Technique:
You are a table analysis expert. Your task is to identify which
cell(s) in the table contain or support the given answer to the
question.

TABLE: {table}

QUESTION: {question}
ANSWER: {answer}

TASK: Identify the cell coordinate(s) that contain or directly
support this answer. Use Excel-style coordinates where columns

are letters (A, B, C, ...) and rows are numbers (1, 2, 3, ...).

RESPONSE FORMAT: Return ONLY the cell coordinates in Excel formula

format.

Examples:

- Single cell: "=E7" or "=B3"

— Multiple cells: "=A2" or list them separately: "=A2, =B2, =C2"

- If the answer involves a formula (sum, average, etc.),
you may use: "SUM(C3:C1l0)" or "=Al+B2"

IMPORTANT: Do NOT repeat the question, table, or instructions.
Output ONLY the cell coordinates.

ATTRIBUTED CELLS:

Few-shot Technique:
You are a table analysis expert. Your task is to identify which
cell(s) in the table contain or support the given answer to the
question.
Here is an example:
EXAMPLE:

TABLE:
{examplel_table}
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QUESTION: {examplel_question}
ANSWER: {examplel_answer}
ATTRIBUTED CELLS: {examplel_cells}

Now analyze this table:
TABLE: {table}

QUESTION: {question}
ANSWER: {answer}

IMPORTANT: Do NOT repeat the example, question, table, or
instructions. Output ONLY the cell coordinates in formula
format.

ATTRIBUTED CELLS:

Chain-of-Thought Technique:

You are a table analysis expert. Your task is to identify which
cell(s) in the table contain or support the given answer to the
question.

TABLE: {table}

QUESTION: {question}
ANSWER: {answer}

Let’s think step by step:

1. First, understand what the question is asking for.

2. Then, locate where the answer "{answer}" appears or can be
derived from in the table.

3. Identify the specific cell coordinate(s) using Excel-style
notation (columns as letters A, B, C... and rows as numbers

1, 2, 3...).

4. If the answer is computed from multiple cells (e.g., a sum),
express it as a formula like "SUM(C3:C1l0)" or "=Al+B2".

5. For simple cell references, use the format "=E7" or "=B3".

IMPORTANT: Do NOT repeat the question or table in your reasoning.

REASONING:

Based on the above reasoning, provide ONLY the final cell coordinates
in Excel formula format (e.g., "=E7", "SUM(C3:Cl0)", or "=Al+B2").
Do NOT repeat your reasoning or the question.

ATTRIBUTED CELLS:

Confidence Querying Prompt (CQP) :

A language model was analyzing a table to identify cells that
support an answer.

TABLE: {table}

QUESTION: {question}

ANSWER: {answer}

All possible cell coordinates in this table: {all_cells_list}
The model selected the following cell(s): {predictedicells}

Critically analyze whether the identified cells correctly support

the answer given all the available cells. Check for missed cells

or inclusion of irrelevant cells.

How certain are you that the model’s cell selection is completely correct?
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Table 4: Internal and Verbal Confidence Scores in % Across Modalities and Prompting Strategies.

Difference is calculated as |avg (verbal) - avg(internal) | for each row.
Markdown JSON Images Confidence
Strategy  Model Internal Verbal Internal Verbal Internal Verbal Gap
Qwen3-VL 81.36 60.8 71.55 48.94 85.72 80.94 15.98
Zero Shot Gemma3 83.74 86.30 75.23 82.11 83.50 85.98 3.98
ero S0t N olmo2 53.53 64.8 38.9 432 4584  96.22 21.98
InternVL3.5 65.50 61.10 47.75 32.70 65.78 73.24 4.00
Qwen3-VL 77.4 52.6 60.2 25.58 83.58 77.02 21.99
Few Shot Gemma3 88.32 83.23 64.97 100.00 83.39 85.92 10.83
Molmo?2 60.31 60.6 37.94 32.6 36.75 92.94 17.04
InternVL3.5 67.79 48.54 43.49 26.47 69.54 48.86 18.98
Qwen3-VL 85.39 65.85 75.41 46.37 84.11 82.77 16.64
CoT Gemma3 88.66 82.83 67.95 82.82 82.81 85.54 3.92
Molmo?2 56.67 55.38 28.25 41.56 49.53 90.99 17.82
InternVL3.5 77.74 61.16 66.66 30.65 83.99 74.60 20.66
Average 73.87 65.26 56.525 49.41 71.21 81.26 -
a. Very Certain (No doubts at all)
b. Fairly Certain (Minor doubts)
c. Moderately Certain (Some doubts)
d. Somewhat Certain (Significant doubts)
e. Not Certain (Likely incorrect)
f. Very Uncertain (Definitely incorrect)

Answer with just the letter (a-f):

A.2 CONFIDENCE SCORES:
A.3 CONFORMAL PREDICTION FOR UNCERTAINTY QUANTIFICATION

While attribution metrics evaluate whether a model’s cited cell supports the answer, they do not
quantify how uncertain the response is. Therefore, we study uncertainty quantification (UQ) as
presented by (Ye et al.l 2024). We employ split-conformal prediction, which converts the models
per-cell confidence scores to a prediction set C'(z) which uses a user-controlled target error rate «.

Setup and Adaptations: We utilize the standard split-conformal partition of calibration (D, ) and
test (Diest) sets. However, we introduce two specific adaptations to handle the nature of generative
table attribution:

* Multi-Cell Coverage: Unlike standard classification where the label is a single token, a
ground truth answer in our task may span a region of cells. We therefore define the coverage
criterion as satisfied if any ground truth cell is present in the predicted set C(x).

* Open-Vocabulary Approximation: Since our model operates over an open vocabulary,
and not a fixed label set, computing the normalizing constant over all possible table coordi-
nates is computationally complex. We instead adopt a sparse approximation where proba-
bility mass is estimated only for the tokens actively generated by the model, assigning zero
probability to non-generated coordinates.

Scoring Functions: We implement two non-conformity scoring functions, adapted from Ye et al.
(2024) to support our multi-cell coverage definition:

* Least Ambiguous Class (LAC): This method constructs prediction sets based on absolute
probability thresholds. We define the non-conformity score s; as one minus the probability
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Table 5: Model uncertainty quantification results for attribution across representations and prompt-
ing strategies. We report average prediction set size (SS, number of cells) and coverage rate (CR,

%).

Results:

Markdown JSON Images
Strategy Model SS CR SS CR SS CR
Qwen3-VL 18496 8350 186.58 79.50 187.22 87.50
Zero Shot Gemma3 165.61 80.32 183.73 80.72 186.49 83.70
Molmo2 184.11 8350 187.80 79.00 187.53 90.10
InternVL3.5 183.09 80.50 185.54 81.50 177.33 79.00
Qwen3-VL 183.67 8250 188.79 81.00 188.16 87.30
Few Shot Gemma3 171.83 80.12 182.26 80.12 186.48 86.80
W Molmo2 187.31 85.00 185.07 78.00 188.16 83.10
InternVL3.5 17446 81.50 17744 79.00 177.33 79.00
Qwen3-VL 173.60 84.00 179.17 80.50 184.89 88.80
Chain of Thought Gemma3 183.27 79.32 180.59 7851 18597 83.70
! e Molmo2 181.05 81.50 188.55 80.50 184.55 83.50

InternVL3.5 185.15 77.00 187.21 7850 186.40 77.00

of the most likely correct cell:

i=1- h 1
W=l o) v

The prediction set is constructed by including all cells with probability p(y|z) > 1 — g,
where ¢ is the empirical quantile of scores over De,;.

Adaptive Prediction Sets (APS): This method accumulates probability mass from the
sorted predictions to account for the tail of the distribution. We define the non-conformity
score s; as the minimum cumulative mass required to reach any valid ground truth cell:
=AY @
where A(y) is the cumulative probability mass of candidate cells sorted in descending or-

der. The prediction set includes candidates until the cumulative mass exceeds the calibrated
threshold q.

Table 5 reports uncertainty quantification results across representations and prompting

strategies using prediction set (SS) and coverage rate (CR). Across all representations and prompting
methods, coverage rates remain close to the target level, while prediction set sizes vary substantially
by modality, with image based inputs consistently producing larger sets than markdown and JSON.
This indicates higher attribution uncertainty under visual perturbations.

A.4 COMPLETE ATTRIBUTION METRICS FOR ALL MODEL FAMILIES

Table[6][7} [8] and P]report the attribution metrics scores for the Gemma3, Qwen3-VL, Molmo2, and
InternVL3.5 model families respectively.
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Table 6: Attribution Metrics for Gemma Model Family

Markdown JSON Images
Strategy Model F1 Accuracy F1 Accuracy F1 Accuracy
Gemma3-4b  0.159 13.40 0.113 0.80 0.887 16.60
Zero Shot Gemma3-12b  0.306 27.20 0.141 0.60 0.396 37.10
Gemma3-27b  0.372 31.00 0.279 1.51 0.464 44.10
Gemma3-4b  0.713 6.20 0.006 0.60 0.160 14.20
Few Shot Gemma3-12b  0.247 22.30 0.004 0.40 0.396 36.90
Gemma3-27b  0.279 26.50 0.002 0.00 0.393 37.13
Gemma3-4b 0.11 10.00 0.0036 0.20 0.16 14.10
Chain of Thought Gemma3-12b  0.26 24.20 0.0087 0.60 0.42 39.90
Gemma3-27b 047 44.50 0.0125 1.00 0.47 45.90
Average 0.253 22.87 0.01 0.63 0.340 31.77
Table 7: Attribution Metrics for Qwen3-VL Model Family
Markdown JSON Images
Strategy Model F1 Accuracy F1 Accuracy F1  Accuracy
Qwen3-VL-2b 0.10 8.50 0.005 0.50 0.15 14.10
Zero Shot Qwen3-VL-4b 0.379 35.50 0.015 1.00 0.48 45.40
Qwen3-VL-8b  0.261 23.50 0.004 0.00 0.40 37.50
Qwen3-VL-32b 0.515 49.50 0.021 1.00 0.72 69.70
Qwen3-VL-2b  0.068 6.50 0.010 1.00 0.09 8.20
Few Shot Qwen3-VL-4b 0.240 21.50 0.019 1.50 0.38 34.90
Qwen3-VL-8b  0.281 25.50 0.024 1.50 0.30 27.20
Qwen3-VL-32b  0.390 36.00 0.003 0.00 0.69 68.10
Qwen3-VL-2b  0.220 20.00 0.003 0.00 0.32 29.80
Chain of Thoueht Qwen3-VL-4b  0.515 49.00 0.016 1.00 0.47 44.40
& Qwen3-VL-8b  0.570 52.50 0.001 0.00 0.68 64.80
Qwen3-VL-32b  0.685 59.00 0.018 1.00 0.77 70.10
Average 0.35 32.25 0.012 0.71 0.46 42.85
Table 8: Attribution Metrics for Molmo2 Model Family
Markdown JSON Images
Strategy Model F1 Accuracy F1 Accuracy F1 Accuracy
Zero Shot Molmo2-4b  0.218 19.5 0.013 1.00 0.355 33.6
Molmo2-8b  0.222 20.00 0.015 0.05 0.369 34.80
Few Shot Molmo2-4b  0.196 18.00 0.01 0.50 0.215 20.20
Molmo2-8b  0.096 8.50 0.00 0.00 0.243 22.80
Chain of Thought Molmo2-4b  0.162 15.50 0.019 1.00 0.243 22.90
& Molmo2-8b  0.205 19.50 0.013 0.50 0.3376 31.70
Average 0.183 16.83 0.011 0.58 0.294 27.66
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Table 9: Attribution Metrics for InternVL3.5 Model Family

Markdown JSON Images

Strategy Model F1 Accuracy F1 Accuracy F1 Accuracy
InternVL3.5-4b 0.273 42.50 0.013 1.50 0.441 53.10
Zero Shot InternVL3.5-8b 0.193 17.50 0.016 1.00 0.254 22.50
InternVL3.5-14b  0.44 46.50 0.026 1.50 0.557 56.30
InternVL3.5-38b  0.595 56.50 0.023 1.50 0.616 59.40
InternVL3.5-4b 0.125 36.50 0.008 1.00 0.136 52.60
Few Shot InternVL3.5-8b 0.190 16.50 0.015 1.00 0.277 25.30
InternVL3.5-14b  0.375 37.00 0.013 0.50 0.533 57.30
InternVL3.5-38b  0.448 42.50 0.013 1.00 0.541 52.50
InternVL3.5-4b 0.364 39.00 0.01 0.50 0.534 54.70
Chain of Thoueht InternVL3.5-8b 0.379 36.00 0.017 1.00 0.49 45.80
& InternVL3.5-14b  0.447 40.50 0.018 1.00 0.582 55.40
InternVL3.5-38b  0.607 58.00 0.003 0.00 0.646 59.5
Average 0.369 39.08 0.014 0.95 0.467 49.53
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